C1 Jan 2011

1.

(a) Find the value of $16^{-\frac{1}{4}}$
(b) Simplify $x\left(2 x^{-\frac{1}{4}}\right)^{4}$
2.

Find

$$
\int\left(12 x^{5}-3 x^{2}+4 x^{\frac{1}{3}}\right) \mathrm{d} x
$$

giving each term in its simplest form.

3.

Simplify

$$
\frac{5-2 \sqrt{3}}{\sqrt{3}-1}
$$

giving your answer in the form $p+q \sqrt{3}$, where p and q are rational numbers.
4.

A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by,

$$
\begin{gathered}
a_{1}=2 \\
a_{n+1}=3 a_{n}-\mathrm{c}
\end{gathered}
$$

where c is a constant
(a) Find an expression for a_{2} in terms of c.

Given that $\sum_{r=1}^{3} a_{r}=0$
(b) find the value of c
5.

Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=\frac{x}{x-2}, \quad x \neq 2
$$

The curve passes through the origin and has two asymptotes, with equation $y=1$ and $x=2$, as shown in figure 1 .
(a) In the space below, sketch the curve with equation $y=\mathrm{f}(x-1)$ and state the equations of the asymptotes of this curve.
(b) Find the coordinates of the points where the curve with equation $y=\mathrm{f}(x-1)$ crosses the coordinate axes
6.

An arithmetic sequence has first term a and common difference d. The sum of the first 10 terms of the sequence is 162 .
(a) Show that $10 a+45 d=162$

Given also that the sixth term of the sequence is 17,
(b) write down a second equation in a and d,
(c) find the value of a and the value of d
7.

The curve with equation $y=\mathrm{f}(x)$ passes through the point $(-1,0)$.
Given that

$$
f^{\prime}(x)=12 x^{2}-8 x+1
$$

find $\mathrm{f}(x)$.
(5)
8.

The equation $x^{2}+(k-3) x+(3-2 k)=0$, where k is a constant, has two distinct real roots.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}+2 k-3>0 \tag{3}
\end{equation*}
$$

(b) Find the set of possible values of k.
9.

The line L_{1} has equation $2 y-3 x-k=0$, where k is a constant.
Given that the point $A(1,4)$ lies on L_{1}, find
(a) the value of k
(b) the gradient of L_{1}

The line L_{2} passes through A and is perpendicular to L_{1}.
(c) Find an equation of L_{2} giving your answer in the form $a x+b y+c=0$, where a, b and c are integers

The line L_{2} crosses the x-axis at point B.
(d) find the coordinates of B
(e) find the exact length of $A B$
10.
(a) On the same axes, sketch the graphs of
(i) $y=x(x+2)(3-x)$
(ii) $y=-\frac{2}{x}$
showing clearly the coordinates of all the points where the curve cross the coordinate axes.
(b)Using your sketch state, giving a reason, the number of real solutions to the equation

$$
\begin{equation*}
x(x+2)(3-x)+\frac{2}{x}=0 \tag{2}
\end{equation*}
$$

11.

The curve C has equation

$$
y=\frac{1}{2} x^{3}-9 x^{\frac{3}{2}}+\frac{8}{x}+30, \quad x>0
$$

(a) Find $\frac{d y}{d x}$
(b) Show that the point $P(4,-8)$ lies on C
(c)Find an equation of the normal to C at the point P , giving your answer in the form $a x+b y+c=0$, where a, b and c are integers

